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in block­oriented systems by orthogonal

wavelets with compact support

(revised version)

Zygmunt Hasiewicz, Mirosław Pawlak and Przemysław Śliwiński

Abstract

The paper addresses the problem of identification of nonlinear characteristics in a certain class of

discrete­time block­oriented systems. The systems are driven by random stationary white processes (i.i.d.

input sequences) and disturbed by stationary, white or coloured, random noise. The prior information

about nonlinear characteristics is nonparametric. To construct identification algorithms the orthogonal

wavelets of compact support are applied, and a class of wavelet­based models is introduced and examined.

It is shown that under moderate assumptions the proposed models converge almost everywhere (in

probability) to the identified nonlinear characteristics, irrespective of the noise model. The rule for

optimum model size selection is given and the asymptotic rate of convergence of the model error is

established. It is demonstrated that in some circumstances the wavelet models are, in particular, superior

to classical trigonometric and Hermite orthogonal series models worked out earlier.

Index Terms

block­oriented systems, nonlinearity recovering, nonparametric approach, wavelet­based models, con­

vergence analysis.

I. INTRODUCTION

We consider the problem of identification of nonlinear characteristics in a class of discrete­time block­

oriented systems, i.e. structured objects where nonlinear static elements are separated from the rest of

the system and embedded in a composite structure containing discrete­time linear dynamic blocks and
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other ’nuisance’ nonlinearities ([1]). It is assumed that a priori information about subsystems is small

and in particular the nonlinear characteristics to be identified are not given in a parametric form.

The problem of recovering static characteristics in interconnected composite systems has been exten­

sively studied in the literature. For steady state systems it has been investigated in a number of papers

using parametric and nonparametric approach (e.g. [19], [14]). For block­oriented dynamical systems, the

problem has been initially examined under the assumption that the nonlinear characteristics are known

up to the parameters and typically are polynomials of known degree. Various parametric approaches

have been developed, with particular attention to cascade and parallel systems. Thorough overview of

the derived parametric identification methods can be found in [18].

Less demanding nonparametric approach, discarding the restrictive assumption of parametric prior

knowledge of the characteristics, has been initiated in [16] for Hammerstein systems. The approach,

originated from nonparametric estimation of a regression function, was next developed bringing a collec­

tion of papers where two types of nonparametric identification algorithms were studied: kernel algorithms

(e.g. [16], [17]) and orthogonal series algorithms applying conventional orthogonal series expansions of

characteristics (e.g. [13], [27]). The algorithms were elaborated for Hammerstein and Wiener systems,

i.e. cascade connections of static nonlinearities and linear dynamic blocks in a suitable order.

In this paper, we propose and examine a class of identification algorithms based on wavelet approxima­

tion of functions. The algorithms use for building of the wavelet models orthogonal wavelets with compact

supports. Orthogonality of wavelets enables easy and convenient improvement of the models by stepwise

expansion (adding new details) and compactness of the supports ensures obtainment of simultaneously

accurate and parsimonious representations of nonlinear characteristics, with good localization ability. In

the models we apply both father and mother wavelets, and hence fully exploit the multiresolution idea

and extend the results of [28] and [20] where to the construction of wavelet models only scaling functions

(father wavelets) have been used.

We assume that identified systems operate in stochastic conditions. By assumption they are excited by

stationary white random processes (i.i.d. random input sequences) for which there exist probability density

functions (unknown in our approach). The external stationary random noises acting on the systems can

be white or coloured, with arbitrary correlation structure. Owing to the zooming capability of wavelets,

we focus on the analysis of local, pointwise, properties of the wavelet models. We show that under

weak assumptions concerning the underlying nonlinearities and input probability density functions, the

wavelet­based models provide consistent estimates of nonlinear characteristics which rapidly converge

to the true nonlinear functions, regardless of whether the disturbing noise is white or coloured. We
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establish that the rates of convergence can approach the best possible nonparametric convergence rates

[29] and that the wavelet models may, for example, outperform classical trigonometric and Hermite

orthogonal series models worked out earlier. Up to our best knowledge, such an analysis in the context

of system identification has not been presented yet. This is perhaps because in spite of numerous successful

applications of wavelets in many fields of engineering, for instance signal processing, image analysis,

communication systems, as to quote a few (see e.g. [26], [2] and the references cited therein), there

are still few papers concerning wavelets employment in system identification. Actually, the collection of

contributions in this area does not exceed significantly [24], [30], [4], [11], [21] and the papers mentioned

above.

The paper is organized as follows. Section II presents the class of systems under consideration and states

the system identification task. Section III gives examples of popular block­oriented systems belonging

to the studied class. The general wavelet­based identification algorithm of nonlinear characteristics is

constructed in Section IV. In Section V, we consider convergence of the wavelet models and provide

conditions ensuring weak pointwise consistency. In Section VI, we discuss the convergence speed. The

guidelines for optimum model size selection (optimizing the convergence rate) are given and we propose

simple sub­optimal rule for selection of the size of the wavelet model, helpful in the case of insufficient

prior knowledge about identified nonlinearity and input density. Results of computer simulations are

reported in Section VII, and conclusions in Section VIII complete the paper. For the sake of convenience,

pertinent facts concerning wavelet approximation of functions by orthogonal wavelets with compact

support are collected in Appendix A. Appendices B, C and D contain technical derivations and lemmas.

II. PROBLEM FORMULATION

We consider a class of discrete­time block­oriented systems which input­output behaviour can be

expressed by the equation

yk = R (xk) + ξ (xk−1, xk−2, . . .) + zk (1)

where R (x) is a static nonlinearity to be identified, {(xk, yk)} is the (scalar input, scalar output) sequence,

{ξk = ξ(xk−1, xk−2, . . .)} is the ’system noise’ induced by the system dynamics, and {zk} is the external

disturbance (Fig. 1). We assume that the system in (1) is asymptotically stable and operates in steady

state. Moreover, the following conditions are imposed.

A1. The nonlinearity R (x) is such that |R (x)| ≤ C1R |x|+ C2R, some C1R, C2R > 0.

A2. The input process {xk}k∈Z (Z ­ the set of integers) is a sequence of independent and identically

distributed (i.i.d.) random variables with finite variance σ2x, and there exists a probability density
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function f (x) such that f(x) ≤ Mf < ∞, some Mf > 0. The density f(x) and the variance σ2x

are unknown.

A3. The system noise {ξk}k∈Z is of the form

ξk = ξ1k + ξ2k + ...+ ξJk (2)

where

ξjk =
∞X
i=1

λjiζj (xk−i) (3)

and where for j = 1, 2, ..., J it holds that
P∞
i=1 |λji| <∞ and ζj (x) is a nonlinear function such

that E ζj (x1) = 0 and E ζ2j (x1) = σ2jζ < ∞. The impulse responses {λji} and functions ζj (x)

are not known.

Fig. 1. General system under consideration.

A4. The external noise {zk}k∈Z is, in general, a correlated process generated from stationary white

noise processes {εlk}k∈Z , l = 1, 2, ..., L, with E εl1 = 0 and E ε2l1 = σ
2
lε <∞, such that

zk = z1k + z2k + ...+ zLk (4)

where

zlk =
∞X
i=0

ωliεl,k−i (5)

and
P∞
i=0 |ωli| < ∞ for l = 1, 2, ..., L. The impulse responses {ωli} and the noise variances σ2lε

are unknown.

A5. Processes {xk} and {εlk} , l = 1, 2, ..., L, are mutually statistically independent.

A6. Only the external (input, output) measurement data {(xk, yk)} are available and R(x) should be

identified in the bounded region [a, b].

A7. For x ∈ [a, b], it holds that

0 < δ ≤ f (x) (6)

some δ > 0.
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The aim is to recover R(x) in the region [a, b] using solely the input­output data {(xk, yk)}Nk=1 .
We note that Assumptions A1­A7 are rather weak and represent realistic system identification condi­

tions. First, prior knowledge about R (x) is poor. We merely presume that |R (x)| grows with |x| not

faster than linearly (Assumption A1) which yields a broad class of admissible nonlinearities. As such

nonlinearities cannot be parameterized, our identification problem is nonparametric. Second, the system

input can be any i.i.d. random process possessing bounded and nonvanishing in the identification region

probability density function, with finite variance (Assumptions A2 and A7). Third, the external noise can

be correlated and can be any type of coloured noise (Assumption A4). Moreover, the disturbances have

not to be bounded. As regards Assumption A6, it reects standard practical situations where (i) the inner

signals in the block­oriented systems are not accessible for measurements (see, e.g., [1], [18]) and (ii)

the nonlinearity R(x) is required to be known only in some bounded region. We observe for further use

that under Assumptions A1­A4 the system output {yk} is a correlated second­order stationary random

process of finite variance.

III. EXAMPLES OF SYSTEMS

Although class of systems in (1)­(5) looks rather specific, there is quite a lot of exemplary block­

oriented structures which conform to this description and are often considered in the literature. In the

following examples µ(x), η(x) and ν(x) are static nonlinearities, {λi} , {γi} and {ρi} denote impulse

responses of linear dynamical elements such that
P∞
i=0 |λi| <∞,

P∞
i=0 |γi| <∞,

P∞
i=0 |ρi| <∞, and

zk is coloured noise produced by linear noise filter {ωi} from a stationary white noise process {εk}
according to the equation zk =

P∞
i=0 ωiεk−i where

P∞
i=0 |ωi| <∞, E ε1 = 0, E ε21 = σ2ε <∞ and {εk}

is independent of the input {xk} .Moreover, we denote dµλ = Eµ (x1)
P∞
i=1 λi, dηλ = E η (x1)

P∞
i=1 λi,

dηγ = E η (x1)
P∞
i=1 γi and µ0 (x) = µ (x)− Eµ (x1) , η0 (x) = η (x)− E η (x1) .

a) Parallel system [3]: For parallel system as in Fig. 2a and λ0 = 0 (one step delay), we get

yk = µ (xk) + d+
∞X
i=1

λi (xk−i − Ex1) + zk

where d = Ex1
P∞
i=1 λi which maps (1)­(5) for R (x) = µ (x) + d and J = L = 1 with λ1i = λi,

ω1i = ωi, ε1k = εk and ζ1 (x) = x− Ex1, provided that Ex21 <∞ (Assumption A2).

b) Hammerstein system [13]: For Hammerstein system (Fig. 2b) we have

yk = λ0µ (xk) + dµλ +
∞X
i=1

λiµ0 (xk−i) + zk

This gives (1)­(5) for R (x) = λ0µ (x) + dµλ and J = L = 1 with the same specifications as above and

ζ1 (x) = µ0 (x) , provided that Eµ2 (x1) <∞ (Assumptions A1 and A2).
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Hammerstein system with two­segment nonlinearity [32]: For Hammerstein system with two­segment

nonlinearity (Fig. 3a) we obtain

yk = λ0 [µ (xk) + η(xk)] + (dµλ + dηλ) +
∞X
i=1

λiµ0 (xk−i) +
∞X
i=1

λiη0 (xk−i) + zk

This falls into the description (1)­(5) for R (x) = λ0 [µ (x) + η(x)] + d where d = dµλ + dηλ, J = 2

with λ1i = λ2i = λi, ζ1 (x) = µ0 (x) , ζ2 (x) = η0 (x) and L = 1 with the noise filter defined above,

provided that Eµ2 (x1) <∞, E η2 (x1) <∞ (Assumptions A1 and A2).

Fig. 2. a) Parallel system, b) Hammerstein system.

Hammerstein system with nuisance nonlinearity: For Hammerstein system with nuisance nonlinearity

ν(.) (Fig. 3b) it holds that

yk = λ0µ (xk) + η(xk) + dµλ +
∞X
i=1

λiµ0 (xk−i) + zk

where η(x) = ν(µ(x)). This conforms with the description (1)­(5) for R (x) = λ0µ (x) + η(x) + dµλ

and further specifications as for Hammerstein system.

Fig. 3. a) Hammerstein system with two­segment nonlinearity, b) Hammerstein system with nuisance nonlinearity.

Hammerstein system with nuisance dynamics: For Hammerstein system with nuisance dynamics

{ρi} (Fig. 4a) and ρ0 = 0 we have

yk = λ0µ (xk) + d+
∞X
i=1

λiµ0 (xk−i) +
∞X
i=1

γi (xk−i − Ex1) + zk
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where d = dµλ + Ex1
P∞
i=1 γi and γi =

P∞
p=0 λpρi−p. This fits (1)­(5) for R (x) = λ0µ (x) + d,

J = 2 with λ1i = λi, ζ1 (x) = µ0 (x) , λ2i = γi, ζ2 (x) = x− Ex1 (provided that Eµ2 (x1) < ∞ and

Ex21 <∞), and L = 1 with the previous noise model.

Fig. 4. a) Hammerstein system with nuisance dynamics, b) Uryson system.

Uryson system [18]: For Uryson system in Fig. 4b we obtain

yk = λ0µ (xk) + γ0η(xk) + d+
∞X
i=1

λiµ0 (xk−i) +
∞X
i=1

γiη0 (xk−i) + zk

where d = dµλ + dηγ . This fulfils (1)­(5) for R (x) = λ0µ (x) + γ0η(x) + d, J = 2, L = 1 and obvious

further specifications.

Fig. 5. a) Two­channel system, b) Bunch system.

Two­channel system [31]: For two­channel system (Fig. 5a) with stationary white inputs {xk} and

{uk} (mutually independent and independent of the noise {εk}) we get

yk = λ0µ (xk) + d+
∞X
i=1

λiµ0 (xk−i) +
∞X
i=0

γi (η(uk−i)− E η(u1)) + zk

where d = dµλ+E η(u1)
P∞
i=0 γi. This can be put in the form of (1)­(5) for R (x) = λ0µ (x)+d, J = 1

with λ1i = λi, ζ1 (x) = µ0 (x) and L = 2 with ω1i = γi, ε1k = η(uk) − E η(u1), ω2i = ωi, ε2k = εk,
provided that Eµ2 (x1) <∞ and E η2 (u1) <∞.
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Bunch system: For each branch of the system in Fig. 5b it holds that

yk = λ0µ (xk) + dµλ +
∞X
i=1

λiµ0 (xk−i) + zk

vk = γ0η (xk) + dηγ +
∞X
i=1

γiη0 (xk−i) + zk

This clearly maps the description (1)­(5) (see Hammerstein system). The last three examples can be easily

generalized.

The above systems can be met in diverse areas as for example nonlinear control, telecommunication,

acoustics, signal processing, chemical engineering, or biomedical engineering. A comprehensive bibliog­

raphy concerning practical applications of such and other structures can be found in [12]. We refer also

to [18, Chapter 7] and the references cited therein for some specific case studies.

The presented examples reveal that the nonlinearity R(x) in equation (1) can generally differ from

any true nonlinear characteristic existing in a system. However, as it follows from (1), only R(x) of such

type as in examples can be tried to be identified from just external input­output observations {(xk, yk)}
unless some additional structural conditions are fulfilled. For instance, for Hammerstein system we gain

R(x) = µ(x) if λ0 = 1 and Eµ (x1) = 0 where the latter is fulfilled if, e.g., the system nonlinearity

µ(x) is an odd and the input density f(x) is an even function. This physical limitation, following from

composite structure of block­oriented systems, is well realized in the system identification literature, cf.

[1], [13], [18].

IV. IDENTIFICATION ALGORITHM

We shall derive a scheme for identification of the nonlinearity R(x) in equation (1) from the measure­

ment data {(xk, yk)}, using orthogonal wavelets with compact support presented in Appendix A. To this

end we exploit the following.

1. For each point x such that the input probability density f (x) > 0, the nonlinear characteristic

R (x) can be expressed as the fraction

R (x) = g(x)/f (x) (7)

where g (x) = R (x) f (x) (compare e.g. [13]).

2. Under Assumptions A1 and A2, g (x) , f(x) ∈ L2 (R):Z +∞

−∞
g2 (x) dx ≤ Mf

Z +∞

−∞
R2 (x) f(x)dx ≤ 2MfC

2
R(σ

2
x +m

2
x + 1) <∞Z +∞

−∞
f2 (x) dx ≤ Mf

Z +∞

−∞
f(x)dx =Mf <∞
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where CR = max{C1R, C2R}, mx = E x1, σ2x = varx1.
3. The functions g(x) and f(x) can be approximated by the wavelet­based models (cf. (50) in

Appendix A):

g (x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

αgMnϕMn (x) +
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

βgmnψmn (x) (8)

and

f (x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

αfMnϕMn (x) +
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

βfmnψmn (x) (9)

where the summation limits nmin(ϕ, x,M), nmax(ϕ, x,M), nmin(ψ, x,m), nmax(ψ, x,m) are as

in (52) and the wavelet coefficients αgMn, β
g
mn, α

f
Mn, β

f
mn are calculated according to (51) in

Appendix A.

4. As f(x) is a probability density function, the αgMn’s, β
g
mn’s, α

f
Mn’s and βfmn’s in (8) and (9) are

the following expectations (see (45) and (51) in Appendix A):

αgMn =

Z +∞

−∞
R (x)ϕMn (x) f(x)dx = E [R (x1)ϕMn (x1)] (10)

βgmn =

Z +∞

−∞
R (x)ψmn (x) f(x)dx = E [R (x1)ψmn (x1)] (11)

αfMn =

Z +∞

−∞
ϕMn (x) f(x)dx = E [ϕMn (x1)] (12)

βfmn =

Z +∞

−∞
ψmn (x) f(x)dx = E [ψmn (x1)] (13)

Owing to (1) and Assumptions A2­A5 it moreover holds that

E [R (x1)ϕMn (x1)] = E [y1ϕMn (x1)] (14)

E [R (x1)ψmn (x1)] = E [y1ψmn (x1)] (15)

5. The approximators g(x;K) and f(x;K) when substituted for the exact g(x) and f(x) in the ratio

(7) yield a wavelet­based model of R(x):

R (x;K) = g(x;K)/f (x;K) (16)

for each point x where f(x;K) 6= 0.
Based on the above observations, we arrive at the following three­step algorithm to identify the

nonlinearity R(x) from empirical (input,output) data {(xk, yk)}Nk=1.
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Step 1: Compute the sample means (see (10)­(15))

α̂gMn = N
−1

NX
k=1

ykϕMn (xk) ; β̂
g
mn = N

−1
NX
k=1

ykψmn (xk) (17)

and

α̂fMn = N
−1

NX
k=1

ϕMn (xk) ; β̂
f
mn = N

−1
NX
k=1

ψmn (xk) (18)

Step 2: Plug in α̂gMn, β̂
g
mn, α̂

f
Mn, β̂

f
mn into the approximators in (8) and (9) obtaining the empirical

wavelet­based models of g(x) and f(x):

ĝ (x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

α̂gMnϕMn (x) +
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

β̂
g
mnψmn (x) (19)

and

f̂ (x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

α̂fMnϕMn (x) +
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

β̂
f
mnψmn (x) (20)

Step 3: Put the models ĝ(x;K) and f̂(x;K) in (16) getting the empirical wavelet­based model of

R(x):

R̂ (x;K) = ĝ(x;K)/f̂ (x;K) (21)

for each point x where f̂(x;K) 6= 0.
Remark 1: Because of the fractional form of the model R̂ (x;K) and compactness of the support of

wavelet functions, the coefficients α̂gMn, β̂
g
mn, α̂

f
Mn, β̂

f
mn can be calculated using simplified rules (cf.

(46) and (48)):

α̂gMn =2
M/2

X
{k:uMn,k∈[s1,s2]}

ykϕ (uMn,k) and β̂
g
mn = 2

m/2
X

{k:umn,k∈[t1,t2]}
ykψ (umn,k) (22)

and

α̂fMn =2
M/2

X
{k:uMn,k∈[s1,s2]}

ϕ (uMn,k) and β̂
f
mn = 2

m/2
X

{k:umn,k∈[t1,t2]}
ψ (umn,k) (23)

and freely scaled, if needed, where umn,k = 2mxk −n and [s1, s2] and [t1, t2] are, respectively, supports

of the wavelet functions ϕ(x) and ψ(x).

Remark 2: For R(x) to be estimated over the interval [a, b] the total number of needed wavelet

coefficients α̂gMn, β̂
g
mn, α̂

f
Mn, β̂

f
mn does not pass (see (19), (20) and (52) in Appendix A)

L(b− a,M,K) = 2 £S (K −M + 1) + 2K db− ae¤ (24)

where S = bsc+ 1 and s is the support size of ϕ (x) and ψ(x) (see (53) in Appendix A).
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We remark that computations in the algorithm are the same for white and coloured noise {zk} (see

Assumption A4 in Section II). This stands in contrast to parametric methods where correlation of

disturbances acting on the system usually results in substantial modification of identification routines

yielding far more demanding computation procedures than for the white noise case; see, e.g., [25], [18]

for appropriate examples concerning parametric methods.

V. CONVERGENCE ANALYSIS

We shall show that the models ĝ(x;K), f̂(x;K) and R̂(x;K) converge pointwise, in a probabilistic

sense, to the true functions g(x), f(x) and R(x) as the number N of data points (xk, yk) grows large

and the scale factor K is appropriately fitted to the number of data. To prove consistency we examine in

turn 1) convergence of the empirical wavelet coefficients α̂gMn, β̂
g
mn, α̂

f
Mn, β̂

f
mn to the true coefficients

αgMn, β
g
mn, α

f
Mn, β

f
mn, and 2) conditions on the scale factor K guaranteeing consistency of the models

ĝ(x;K), f̂(x;K) and R̂(x;K).

A. Convergence of the empirical coefficients

Let (ĉ, c) ∈
n
(α̂gMn,α

g
Mn), (β̂

g
mn,β

g
mn), (α̂

f
Mn,α

f
Mn), (β̂

f
mn,β

f
mn)

o
. Owing to (10)­(15) and (17), (18)

along with stationarity of the processes {xk} and {yk}, we get

Eĉ = c (25)

and hence E(ĉ− c)2 = var(ĉ). As for ĉ ∈
n
α̂gMn, β̂

g
mn, α̂

f
Mn, β̂

f
mn

o
it holds that var(ĉ) ≤ CcN−1 some

Cc > 0 independent of N (see Appendix B), thus ĉ → c in mean square as N → ∞ for each pair

(ĉ, c) ∈
n
(α̂gMn,α

g
Mn), (β̂

g
mn,β

g
mn), (α̂

f
Mn,α

f
Mn), (β̂

f
mn,β

f
mn)

o
of wavelet coefficients. Because in the

sample means in (17) the yk’s as outputs of a dynamical system, moreover corrupted by coloured noise,

are dependent quantities the proof in Appendix B concerning α̂gMn and β̂
g
mn is rather involved.

B. Convergence of the empirical wavelet models

Let (F̂ (x;K), F (x;K), F (x)) belong to
n
(ĝ(x;K), g(x;K), g(x)), (f̂(x;K), f(x;K), f(x))

o
. In view

of (25) we have that (cf. (8), (9) and (19), (20))

E F̂ (x;K) = F (x;K) (26)

Since moreover for each x ∈ [a, b] and each fixed scale factor K (see (71) and (72) in Appendix C),

var
n
F̂ (x;K)

o
≤ (CF2K)N−1 (27)
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some CF > 0 independent of K and N , therefore because of (26) and the above bound, we obtain

E
h
F̂ (x;K)− F (x)

i2 ≤ AE2(F ;x;K) + (CF2K)N−1 (28)

where AE(F ;x;K) is the approximation error as in (55) in Appendix A. This bound and (56) in Appendix

A imply directly the following.

Theorem 1: If the scale factor K depends on the number N of measurement data, K = K(N), and

K(N)→∞, 2K(N)/N → 0 as N →∞ (29)

then ĝ(x;K(N)) → g(x) and f̂(x;K(N)) → f(x) in mean square, and consequently R̂(x;K(N)) →
R(x) in probability as N →∞ for almost all x ∈ [a, b].

Proof: Due to foregoing arguments and the fractional form of the model R̂(x;K) in (21), along

with g(x) = R(x)f(x), the convergence is obvious.

Thus in order to assure consistency of the model R̂(x;K) as the number N of data points increases it

simply suffices that K = K(N) and the wavelet models ĝ(x;K(N)) and f̂(x;K(N)) in the numerator

and denominator duly expand with the number of data, according to (29). Such a condition is fulfilled

for K(N) = bc log2Nc with 0 < c < 1.

Remark 3: Under weak assumptions as in Section II, from the mean square consistency of the models

ĝ(x;K(N)) and f̂(x;K(N)) we can only infer weak consistency of the ratio model R̂(x;K(N)), i.e.

that P
n¯̄̄
R̂(x;K(N))−R(x)

¯̄̄
> ε

o
→ 0 as N → ∞ for each ε > 0. However, as it follows from

the Markov inequality and the Lebesgue dominated convergence theorem, convergence in probability

is equivalent to more intuitive convergence of R̂(x;K(N)) in mean, i.e. E
¯̄̄
R̂(x;K(N))−R(x)

¯̄̄
→

0 as N → ∞, provided that for the model R̂(x;K(N)) it holds that E
n
supN

¯̄̄
R̂(x;K(N))

¯̄̄o
≤

CR < ∞ almost everywhere on [a, b], some CR > 0. This is achieved if E {supN |ĝ(x;K(N))|} ≤
Cg < ∞ and

¯̄̄
f̂(x;K(N))

¯̄̄
≥ δf (compare (6) in Assumption A7) almost everywhere over [a, b],

some Cg, δf > 0 each N. The former is obtained under more restrictive demand that the overall noise

corrupting the system (1) is bounded (see (1), Assumption A1, (17), (19) and (49), (53) in Appendix

A), and the latter is ensured after slight modification of the model f̂(x;K(N)), namely by considering

f̂mod(x;K(N)) = f̂(x;K(N))I{x:|f̂(x;K(N))|≥δf}(x) + δf I{x:|f̂(x;K(N))|<δf}(x) where 0 < δf < δ (see

(6)) instead of f̂(x;K(N)). The examination of the appropriate modified model R̂mod(x;K(N)) =

ĝ(x;K(N))/f̂mod(x;K(N)) is beyond the scope of this paper. See [33] for some hints concerning

analysis of the modified density model f̂mod(x;K(N)).
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VI. RATE OF CONVERGENCE

The rate of convergence in Theorem 1 strongly depends on the particular choice of a constant c

in the function K(N) = bc log2Nc and the behaviour of the approximation error AE(g;x;K) and

AE(f ;x;K). For comparison purposes with conventional orthogonal series models, we discuss conver­

gence rate of the model R̂(x;K(N)) for local smoothness classes of R(x) and f(x) typically considered

in the literature. In the following, for a sequence of random variables {ϑN} and positive number sequence

{bN} convergent to zero, by ϑN = O(bN ) in probability we mean that rN(ϑN/bN) tends to zero in

probability as N →∞, i.e.

P {|rN | (|ϑN | /bN ) > ε}→ 0 as N →∞ (30)

each ε > 0, where {rN} is a number sequence arbitrarily slowly tending to zero.

A. Approximation error

Let F (x) ∈ {R(x), f(x)}. Assume that F (x) ∈ CνF (x0) where νF ∈ (0, 1) or νF ∈ N ­ the set of

natural numbers. For fractional νF ∈ (0, 1) this means that F (x) is Lipschitz continuous function around

x0 with the exponent νF , F (x) ∈ Lip(x0, νF ), i.e.

|F (x)− F (x0)| ≤ LF |x− x0|νF (31)

some LF > 0. For νF ∈ N the nonlinearity F (x) is by definition νF times continuously differentiable

around x0, and the following bound holds in the neighborhood of x0 (by the Taylor series expansion

formula)

|F (x)− F (x0)| ≤ LF1 |x− x0|+ LF2 |x− x0|2 + ...+ LFνF |x− x0|νF (32)

some LFd > 0, d = 1, 2, ..., νF . We note that F (x) ∈ {R(x), f(x)} does not need to be smooth, and

even continuous, over whole identification region [a, b].

Remark 4: According to (31) and (32), the standard Lipschitz functions Lip(x0, 1) are included into

the class C1(x0), together with once continuously differentiable functions. Therefore, to avoid ambiguity,

the particular smoothness of F (x) ∈ C1(x0) will be further individually specified, if necessary.

Remark 5: If R(x) ∈ CνR(x0) and f(x) ∈ Cνf (x0) then the product function g(x) = R(x)f(x) ∈
Cνg(x0) where νg = min{νR, νf}, which is straightforward to see.

Consider the approximation error as in (55) in Appendix A for F (x) ∈ CνF (x0) and wavelet functions

ψ(x) possessing rψ vanishing moments (cf. (57) in Appendix A). Since for large values of m for the
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wavelet coefficients βmn ((51) in Appendix A) it holds that (cf. e.g. [26])

|βmn| ≤ CFβ 2− (λFψ+
1

2
)m all n (33)

some CFβ > 0 independent of m where λFψ = min{νF , rψ + 1}, the approximation error AE(F ;x;K)

at the point x0 for large K is bounded as follows (see (33) and (55) in Appendix A)

|AE(F ;x0;K)| ≤ SMψ C
F
β

∞X
m=K

2m/22− (λFψ+
1

2
)m

yielding

|AE(F ;x0;K)| ≤ CAE,Fψ 2−λFψK (34)

where CAE,Fψ = SMψ C
F
β /(1−2−λFψ). Hence and Remark 6, for the approximation error AE(g;x0;K)

and AE(f ;x0;K) we obtain in particular the following

|AE(g;x0;K)| ≤ CAE,gψ 2−λgψK (35)

and

|AE(f ;x0;K)| ≤ CAE,fψ 2−λfψK (36)

where CAE,gψ = SMψ C
g
β/(1−2−λgψ), CAE,fψ = SMψ C

f
β/(1−2−λfψ) are appropriate constants and

λgψ = min{νg, rψ + 1} = min{νR, νf , rψ + 1} whereas λfψ = min{νf , rψ + 1}. Since λgψ ≤ λfψ, the

guaranteed approximation rate of g(x) is not faster than the approximation rate of f(x). If νR < νf (i.e.

input density f(x) is a smoother function than the identified nonlinearity R(x) which is rather a typical

situation in practice), we get λgψ < λfψ which prejudges slower approximation rate of g(x) provided

that rψ + 1 > νR, i.e. applied wavelet functions are regular enough.

B. Convergence rate

Suppose that R(x) ∈ CνR(x0) and f(x) ∈ Cνf (x0). Taking into account (28), (35), (36) and Lemma

3 in Appendix D, we ascertain that asymptotically (for large values of N and hence large K(N); cf.

(29)) it holds

ĝ(x0;K(N)) = g(x0) +O

µ³
2−2λgψK(N) + 2K(N)/N

´1/2¶
and

f (̂x0;K(N)) = f(x0) +O

µ³
2−2λfψK(N) + 2K(N)/N

´1/2¶
in probability, and further (by Lemma 4)

R̂(x0;K(N)) = R(x0) +O

µ³
2−2λgψK(N) + 2K(N)/N

´1/2¶
(37)
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in probability including that λgψ ≤ λfψ. Clearly, the best asymptotic convergence rate in (37) is achieved

when the two (antagonistic) components of the error are in balance. This leads to the following.

Theorem 2: Let R(x) ∈ CνR(x0), f(x) ∈ Cνf (x0) and let ψ(x) be a wavelet function possessing rψ

vanishing moments. If the scale factor K(N) is selected according to the rule

Kopt(N) = b(1/ (2λgψ + 1)) log2Nc (38)

then

R̂(x0;Kopt(N)) = R(x0) +O
³
N −λgψ / ( 2λgψ+1)

´
(39)

in probability where λgψ = min{νR, νf , rψ + 1}, and this is the best guaranteed asymptotic rate of

convergence of the wavelet model R̂(x;K(N)) for the triple (R(x), f(x),ψ(x)).

Proof: The conclusion follows immediately from (37).

In view of (39), an optimal matching of the wavelets in the model R̂(x;Kopt(N)) to the smooth­

ness of R(x) and f(x) is obtained when rψ + 1 = dmin{νR, νf}e . Then we obtain the fastest rate

O
¡
N −min{νR,νf}/(2min{νR,νf}+1)¢ for given νR and νf . Higher regularity of wavelets (larger number

of vanishing moments) does not improve convergence and lower regularity decreases the rate in (39).

Because of the effect of the approximation error AE(g;x;K) ((35)) and AE(f ;x;K) ((36)) apparent

in (37), the rate in (39) is slower than the rate O(N −1/2) in probability achieved in the absence of

such an error (compare (28)). This rate, O
¡
N −1 / ( 2+1/λgψ)¢ , for large values of λgψ may be close to

O(N −1/2) but cannot exceed the latter (such a general phenomenon is well known in the nonparametric

inference [29]). Nevertheless, the following beneficial properties of the wavelet model R̂(x;Kopt(N))

can be concluded from (39).

1. If R(x) and f(x) are Lipschitz functions on [a, b] (νR = νf = 1) then the rate in (39) is O(N −1/3)

in probability for each x ∈ [a, b] and each wavelet family. As established in [29], this is the best

possible nonparametric rate of convergence for Lipschitz nonlinearities.

2. If R(x) ∈ CνR(x0), f(x) ∈ Cνf (x0), some νR, νf ∈ N, and moreover νf ≥ νR and rψ +1 ≥ νR
then the rate in (39) is O(N −νR/(2νR+1)) in probability. This is the best possible nonparametric

rate of convergence for differentiable nonlinearities R(x) [29].

Because of these optimality properties and freedom in the choice of wavelet functions, the wavelet­based

model R̂(x;Kopt(N)) can outperform conventional orthogonal series models elaborated earlier in the

literature. For example, for LipschitzR(x) and f(x) around x0 the attainable rateO(N −1/3) in probability

is better thanO(N −1/4) in probability guaranteed for more smooth differentiableR(x), f(x) ∈ C1(x0) by

the trigonometric and Hermite series models (see [15], [13]). The rate O(N −1/4) can, in turn, be achieved
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by the wavelet model R̂(x;Kopt(N)) for considerably less smooth R(x), f(x) ∈ C1/2(x0). For more

smooth differentiable R(x), f(x) ∈ Cd(x0), d ∈ N, and wavelet­based models with rψ + 1 ≥ d we can

achieve the convergence rate O(N −d/(2d+1)) which again is faster than O(N −(2d−1)/ 4d) in probability

achieved by the models using trigonometric or Hermite series approximations (see the references cited

above). Specifically, for locally constant functions R(x) and f(x) around x0, i.e. R(x), f(x) ∈ C∞(x0)
in our denotation, the model R̂(x;Kopt(N)) can potentially achieve the parametric rate of convergence

O(N −1/2) in probability.

It should be mentioned that the presented asymptotic rates of convergence refer to characteristics

embedded in a dynamical system which can be corrupted by arbitrarily correlated noise (Assumption A4

in Section II). The particular system and noise dynamics as well as level (variance) of the noise do not

alter the order of the guaranteed asymptotic rate of convergence which constantly remains the same as

for a static system contaminated by white noise. This is directly seen from (37)­(39) and derivations in

Appendix B and C.

C. Practical scale selection strategy

The scale selection rule in (38) needs the values of local smoothness indices νR and νf and hence (i)

requires advanced prior knowledge about regularity of the nonlinearity R(x) and the input density f(x)

and (ii) can vary from point to point, along with the local smoothness of R(x) and f(x), yielding unstable

values of Kopt(N). Because of this disadvantage and since the indices νR and νf are usually unknown,

we propose the following ’rule of thumb’ for selecting the scale in the wavelet model, independent of

local regularity of R(x) and f(x) :

K̄ (N) = b(1/3) log2Nc (40)

Owing to (37) and obvious inequality min{νR, νf , rψ + 1} ≥ min{νR, νf , 1}, for this rule we obtain

the asymptotic guaranteed rate

R̂(x0; K̄(N)) = R(x0) +O
³
N −min{νR,νf ,1} / 3

´
in probability (41)

irrespective of the applied wavelet family, which ensures convergence O(N −1/3) in probability provided

that νR, νf ≥ 1, i.e. R(x) and f(x) are at least Lipschitz functions around x0. For min{νR, νf} ≥ 1

the rule assures balance of both error components in (37), and no other rule K (N) = b(1/n) log2Nc ,
integer n > 1, yields better warranted convergence of the error for each wavelet model (each rψ ≥ 0).
Since Lipschitz regularity of nonlinearity R(x) and input density f(x) can be reliably expected in most
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real­life situations and the rate O(N −1/3) seems quite satisfactory as compared with the theoretically best

possible rate of convergence O(N −1/2) in probability (see Section VI­B), we recommend the rule (40)

for practical use in the absence of prior knowledge of νR and νf . When considering rougher functions

R(x) or f(x) around x0, with min{νR, νf} < 1, the guaranteed rate in (41) is deteriorated to the order

O
¡
N −min{νR,νf} / 3¢ in probability. For fractional min{νR, νf} = k/l with k ¿ l we get very slow rate

O(N −k/3l). Such situation seems however to be a very special case in practice. Practical utility of the

rule (40) is verified empirically in Section VII. The results presented there confirm fair efficiency of the

strategy.

Remark 6: Convergence properties of specific wavelet models can be easily concluded from (37),

Theorem 2 and discussion in Section VI­C. For example, if we applied wavelets collected in Table I

in Appendix A, they follow from the mentioned facts and the specifications concerning the number of

vanishing moments rψ given in Table I. As an instance, for the models using Haar wavelets (a particular

case of Daubechies wavelets for the wavelet number p = 1) we may conclude the following: if around

x0, R(x) ∈ CνR(x0), f(x) ∈ Cνf (x0) and the scale factor is selected according to the rule (40) then

R̂H(x0; K̄(N)) = R(x0) + O
¡
N −1/3¢ in probability for νR, νf ≥ 1 and this is the best possible

rate of convergence of the Haar wavelet model R̂H (x;K(N)). Another conclusion, concerning whole

class of Daubechies wavelet­based models, is that for R(x) and f(x) with min{νR, νf} < 1 employing

Daubechies wavelets with the wavelet numbers p > 1 is pointless from the rate of convergence viewpoint

as the rate in (39) is then not faster than for the Haar wavelets with p = 1.

VII. NUMERICAL EXPERIMENT

In the experiment, we examine the performance of the models R̂pD(x;K(N)) obtained for the Daubechies

wavelets (ϕpD (x) ,ψ
p
D (x)) with p ≥ 1 (see Table I in Appendix A). Since the Daubechies wavelets have

the shortest supports among all orthogonal compactly supported wavelet functions with a given number of

vanishing moments and hence require the smallest number of components in the generic wavelet models

(19) and (20), the Daubechies wavelet models R̂pD(x;K(N)) are most parsimonious within the class

considered in the paper (see [5], [26], Table I and (53) in Appendix A). In our simulations we assume

[a, b] = [0, 1] (identification region) and use Hammerstein systems which represent well the systems

reported in Section III, with three nonlinear characteristics µ(x) shown in [0, 1] in Fig. 6:

polynomial : µ1 (x) = 10
¡
2x3 − 3x2 + x¢

cube root : µ2 (x) =
3
p
x− 1/2 (42)
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quantizer : µ3 (x) = 1/8 + b8x− 4c /4

The polynomial nonlinearity illustrates smooth infinitely times continuously differentiable functions with

finite power series representation, for which approximation error is particularly sensitive to the number of

vanishing moments of the applied wavelet functions (see (51), (55) and (57) in Appendix A).The cube root

nonlinearity is a smooth almost everywhere differentiable function with infinite power series representation

and hence the approximation error less sensitive to the number of vanishing moments of applied wavelets.

In turn, the quantizer nonlinearity (piecewise­constant) is an example of discontinuous functions with

jumps which match well the dyadic grid points and thus are well­fitted to the implementation of the Haar

wavelet models (p = 1). The linear output dynamics was selected as (i) FIR element with the impulse

-1

0
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0 0.2 0.4 0.6 0.8 1x

µ3(x)

c)-1

0

1

0 0.2 0.4 0.6 0.8 1x

µ2(x)

b)-1

0

1

0 0.2 0.4 0.6 0.8 1x

µ1(x)

a)

Fig. 6. Non­linear characteristics of the simulated Hammerstein systems in [0, 1] (identification region): a) polynomial, b) cube

root, c) quantizer non­linearity.

response {λi = 1− i/4}5i=0 and (ii) IIR subsystem with the description vk − 0.75vk−1 + 0.5vk−2 =
wk + 0.75wk−1 + 0.5wk−2 (where wk = µ (xk) is the input and vk is the output of the dynamics). The

systems were driven by white, stationary random sequence {xk} of the uniform distribution xk ∼ U [0, 1]
(Assumption A2 in Section II), and thus the input probability density function f (x) was infinitely times

continuously differentiable in each internal point of the identification region. Because in our tests the

nonlinearities µ(x) are anti­symmetric with respect to the center x = 0.5 of the region [0, 1] (Fig. 6)

and the input density is symmetric, we get in each case Eµ(x1) = 0. Since moreover λ0 = 1, we have

R(x) = µ(x) (see Section III) i.e. in our experiment we identify true nonlinear characteristics of the

Hammerstein systems. Finally, the external correlated zero mean output noise {zk} was generated as

an output of MA(l) filter zk =
Pl
i=0 ωiεk−i, driven by the uniformly distributed white noise process

εk ∼ U [−c, c], independent of {xk} (see Assumption A4 for L = 1 and Assumption A5). In simulations

we assumed {ωi = 1− i/ (l + 1)}li=0 and l = 0, 1, . . . , 4 obtaining {zk} white for l = 0 and correlated

for l ≥ 1, with increasing correlation for growing l. For each identified nonlinearity R(x) = µ(x) and
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each value of l, the white noise parameter c was selected as to give constant the noise­to­signal ratio:

NSR
def
=

max |zk|
maxx∈[0,1] |R (x)|

In all tests we set NSR = 10%. In fact, according to (1), the noise blurring the nonlinearity R(x) was

enlarged by the system dynamics, and factually yk = R(xk) + ξk + zk with ξk =
P∞
i=1 λiµ(xk−i) (see

Section III) yielding a substantial additional disturbance for large values of
P∞
i=1 |λi| . Such inuence

was discussed in [21].

The experiments were performed using the models R̂pD(x;K(N)) with the wavelet numbers p =

1, 2, . . . , 5. We assumed the initial scale M = 2 and the scale factor K was computed according to the

scale selection rule K̄ (N) in (40). In what follows, we denote R̂pD(x; K̄(N)) = RN(x; p) for shortness.

Accuracy of the models was evaluated using the empirical average pointwise identification error of the

form

Q (N ; p) =
1

T

TX
r=1

 1

1000

1000X
q=1

[R (xq)−RrN (xq; p)]2
 (43)

where T is the number of independent trials for each sample size N , RrN (x; p) is the empirical model

computed in the r­th run for N data points, and xq = q/1000, q = 1, 2, . . . , 1000, are the equidistant esti­

mation points from the interval [0, 1]. In our experiment we assumed T = 100 and N = 50, 100, . . . , 500.
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Fig. 7. Accuracy of the models RN (x; p) against the sample size N and the wavelet number p for a) polynomial, b) cube

root, c) quantizer non­linearity; FIR dynamics and MA(2) output noise.

Precision of the models is illustrated in Figs. 7 and 8 where the Q(N ; p) error is shown jointly for

p = 1, 2, ..., 5 and growing number N of data for each test nonlinearity and, respectively, FIR and IIR

dynamics. We see that the error decreases rapidly with increasing N and good fit between the nonlinear

characteristics and the wavelet models is guaranteed for quite moderate N. For N ≥ 350 the error is

almost the same for each wavelet number p ≥ 2 and each sample nonlinear function. For p = 1 (Haar

wavelets) we obtain larger (for smooth polynomial nonlinearity) and smaller (for quantizer nonlinearity)

December 13, 2003 DRAFT



20

identification error, however still the same regarding the order of the error rate of convergence (shape of

the plots). This is in a good agreement with the asymptotic convergence rate formula in (41). Nevertheless,

in each case one can point out p = p∗ minimizing the empirical error Q(N ; p). In our experiment, p∗ = 3

for polynomial nonlinearity, p∗ = 5 for cube root nonlinearity, and p∗ = 1 for quantizer nonlinearity, in

accordance with expectations (see the discussion concerning test nonlinearities). Similarity of the shape of

plots in Figs. 7 and 8 confirms robustness of the order of the identification error against system dynamics,

established in Section VI.
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Fig. 8. Accuracy of the models RN (x; p) against the sample size N and the wavelet number p for a) polynomial, b) cube

root, c) quantizer non­linearity; IIR dynamics and MA(2) output noise.

To show the performance of the models for various correlation patterns of the noise, Fig. 9 presents

the plots of the Q(N ; p∗) error against the order l of the external noise MA(l) for FIR dynamics and

each test nonlinearity. It is seen that for N ≥ 100 and l varying over the range 0 ≤ l ≤ 4 the error is

nearly the same, i.e. the computed models are insensitive to correlation of the output noise {zk} yielding,

in particular, similar identification error for white noise (l = 0) and the noise MA(4).
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Fig. 9. Effect of the correlation of the output noise on the accuracy of the models RN (x; p∗) for a) polynomial, b) cube root,

c) quantizer non­linearity; MA(l) output noise model, FIR dynamics.
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VIII. CONCLUSIONS

We have focused on the analysis of local, pointwise, behaviour of the wavelet models of nonlinear

characteristics of a class of block­oriented dynamical systems operating under random excitations and

random disturbances. It was demonstrated that for appropriate choice of the scale factor K in relation

to the number of data N , the models converge in probability almost everywhere to the true nonlinear

characteristics and the convergence holds irrespective of system and noise dynamics. This means in

particular that the proposed models are consistent, regardless of whether the noise contribution on the

sampled data can be modeled exactly. Under suitable smoothness conditions concerning the nonlinear

characteristic and the input probability density function we have determined the rule for optimum size

selection of the wavelet model, minimizing the asymptotic identification error, and established asymptotic

rate of convergence. It was shown that the models can attain the best possible nonparametric rate of

convergence and may perform better than trigonometric and Hermite series models worked out earlier in

the literature. It is noteworthy that for the use of the models only a relatively small number of coefficients

α̂gMn, β̂
g
mn, α̂

f
Mn, β̂

f
mn must be calculated from experimental data. For the nonlinearity R(x) to be

identified in the bounded region [a, b], the needed number of coefficients is of order O
¡
2K
¢

(equation

(24)). For the scale factor K chosen as in Theorem 1 this number is much smaller than the number N

of measured raw data and the ’data compression’ rapidly increases with growing N as 2K/N → 0 for

N →∞.
In this paper we have not considered nonlinear in­the­parameters wavelet models which might be

obtained by applying thresholding to wavelet model coefficients (see [26] or [22] for a review of standard

thresholding techniques). The reason is that proper evaluation of such techniques in system identification

framework requires preliminary entire analysis of the behaviour in this context of linear in­the­parameters

wavelet models, which has not been done yet and hence was the aim of the present paper. Various

thresholding methods are at present widely and successfully used in statistics in nonparametric regression

[8] and density estimation [9], and in engineering in, for instance, computer graphics [10] and signal and

image processing for denoising and compression; see, e.g., [7], [2], [6], [22] and the references cited

therein. In the aforementioned problems no dynamics is however present, and in particular all measured

data are statistically independent, provided that blurring noise is white. This is not the case in system

identification tasks where system dynamics is an inherent feature of the problem. The dynamics next

conveyed to the measured data makes in particular the output measurements {yk} statistically dependent

(correlated) quantities (see equation (1) and Assumptions A3 and A4). This converts in turn into much
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more complicated correlation patterns of wavelet coefficients. Since the situation is quite different, it is not

clear if shrinkage strategy, very successful for ’static’ problems, can be simply conveyed to systems with

dynamics producing dependent data, and whether wavelet thresholding may play in system identification

any significant role, particularly in non­Gaussian settings. The experiments with Hammerstein system

in the settings as in Section VII show for example that conventional soft thresholding technique ([7])

yields questionable results. Fig. 10 presents jointly appropriate Q(N ; p∗) error (43) for the thresholded

wavelet model RN,thr (x; p∗) along with the error for the linear in­the­parameters model RN (x; p∗) for

visual evaluation of the models. Because of clear deterioration of the quality of the thresholded model,
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Fig. 10. Accuracy of the linear RN (x; p∗) and soft thresholded RN,thr(x; p∗) models against the sample size N for a)

polynomial, b) cube root, c) quantizer non­linearity; FIR dynamics and MA(2) output noise.

the problem appears essential and worth a separate investigation. It is left for future work.

APPENDIX A

We report below basic facts concerning wavelet approximation of functions, used in the paper.

1. Any square integrable function F (x) ∈ L2 (R) can be approximated with the help of orthogonal

wavelets {ϕMn (x)}n∈Z∪{ψmn (x)}M≤m≤K−1,n∈Z , Z−the set of integers, and the wavelet approximator

(wavelet model) in the adequate approximation (model) space VK = VM⊕WM⊕WM+1⊕ . . .⊕WK−1 ⊂
L2 (R) has the form

F (x;K) =
∞X

n=−∞
αMnϕMn (x) +

K−1X
m=M

∞X
n=−∞

βmnψmn (x) (44)

where

αMn =

Z +∞

−∞
F (x)ϕMn (x) dx ; βmn =

Z +∞

−∞
F (x)ψmn (x) dx (45)
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and

ϕMn (x) = 2
M/2ϕ

¡
2Mx− n¢ ; ψmn (x) = 2

m/2ψ (2mx− n) (46)

are scaled (factor m) and translated (factor n) versions of father and mother wavelet ϕ (x) and ψ(x);

they span the initial approximation space VM and the orthogonal detail (wavelet) spaces Wm:

VM = span {ϕMn (x) , n ∈ Z} ; Wm = span {ψmn (x) , n ∈ Z} .

2. The approximator (44) can be step by step refined by adding further details

F (x;K + 1) = F (x;K) +
∞X

n=−∞
βKnψKn (x)

3. For bounded wavelets with compact support

|ϕ (x)| ≤Mϕ I[s1,s2](x) ; |ψ (x)| ≤Mψ I[t1,t2](x) (48)

some Mϕ,Mψ > 0, and hence (by (46))

|ϕMn (x)| ≤ 2M/2Mϕ I[ s1+n
2M

,
s2+n

2M
](x) ; |ψmn (x)| ≤ 2m/2Mψ I[ t1+n2m

,
t2+n

2m ]
(x) (49)

the approximator (44) takes the form

F (x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

αMnϕMn (x) +
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

βmnψmn (x) (50)

where

αMn =

Z (s2+n)/2M

(s1+n)/2M
F (x)ϕMn (x) dx ; βmn =

Z (t2+n)/2m

(t1+n)/2m
F (x)ψmn (x) dx (51)

and

nmin (ϕ, x,M) = d2Mx− s2e ; nmax (ϕ, x,M) = b2Mx− s1c

nmin (ψ, x,m) = d2mx− t2e ; nmax (ψ, x,m) = b2mx− t1c (52)

indicate active (nonvanishing) wavelets at point x (b.c and d.e are respectively the ’oor’ and ’ceiling’

function).

4. The number of components (nonzero wavelet coefficients) in (50) depends on the support size

s = s2 − s1 = t2 − t1 of ϕ (x) and ψ(x) (the same for both wavelet functions, where moreover

t1 = −(s2 − s1 − 1)/2 and t2 = (s2 − s1 + 1)/2 [26]) and for each M, m and x it holds that

nmax (ϕ, x,M)− nmin (ϕ, x,M) + 1 ≤ S

nmax (ψ, x,m)− nmin (ψ, x,m) + 1 ≤ S (53)
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where S = bsc+ 1.
5. The supports of wavelets present in (50) (active at point x) are included in the interval

[xmin(x,M), xmax(x,M)] =
£
x− s/2M , x+ s/2M¤ (54)

6. The pointwise approximation error of the approximator (50) is (cf. (49) and (53))

|AE(F ;x;K)| = |F (x)− F (x;K)| =
¯̄̄̄
¯̄ ∞X
m=K

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

βmnψmn (x)

¯̄̄̄
¯̄ ≤

≤ SMψ

∞X
m=K

2m/2 max{ |βmn| : nmin(ψ, x,m) ≤ n ≤ nmax(ψ, x,m) } (55)

7. For wavelet functions as in (48) it holds that

|AE(F ;x;K)|→ 0 as K →∞ (56)

for almost all x (in the sense of Lebesgue measure), and in particular at the continuity points of F (x)

[23, Theorem 2.1(ii)].

8. By definition, the mother wavelet ψ(x) has rψ vanishing moments ifZ t2

t1

xkψ (x) dx = 0 for k = 0, 1, . . . , rψ; (57)

then also [26] Z (t2+n)/2m

(t1+n)/2m
xkψmn (x) dx = 0 for k = 0, 1, . . . , rψ

for each m,n ∈ Z and the wavelet support size is s ≥ 2rψ + 1 [26, Proposition 7.4].

Daubechies/symmlet coiet

Support of ϕ (x) [0, 2p− 1] [−2p, 4p− 1]
Support of ψ (x) [1− p, p] [1− 3p, 3p]
nmin (ϕ, x,m) b2mxc− 2p+ 2 b2mxc− 4p+ 2
nmax (ϕ, x,m) d2mxe− 1 d2mxe+ 2p− 1
nmin (ψ, x,m) b2mxc− p+ 1 b2mxc− 3p+ 1
nmax (ψ, x,m) d2mxe+ p− 2 d2mxe+ 3p− 2
rψ p− 1 2p− 1

TABLE I

BASIC PROPERTIES OF TYPICAL ORTHOGONAL WAVELET FUNCTIONS WITH COMPACT SUPPORT (p – WAVELET NUMBER)

Further details can be found in the rich wavelet literature (e.g. [5], [26]). Examples of orthogonal

compactly supported wavelets are Daubechies wavelets, symmlets and coiets characterized in Table I.
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APPENDIX B

For shortness, the derivations are given for J = L = 1 and consequently we omit in the denotations

the superuous subscript ’1’. Extension to J,L > 1 is straightforward. Due to Assumption A6, x varies

over the interval [a, b].

From stationarity of the processes {xk} and {yk} (see equation (1) and Assumptions A2­A4 in Section

II) it follows that (cf. (17))

var
¡
α̂gMn

¢
= var

"
N−1

NX
k=1

ykϕMn (xk)

#
= N−1var [y1ϕMn (x1)]

+2N−1
N−1X
k=1

(1− k/N) cov [yk+1ϕMn (xk+1) , y1ϕMn (x1)]

= N−1 (A+B) , say (59)

Since var [y1ϕMn (x1)] ≤ E
£
y21ϕ

2
Mn (x1)

¤
and y21 ≤ 3

¡
R2(x1) + ξ

2
1 + z

2
1

¢
(by (1) and Cauchy inequal­

ity), we get for the first component

A ≤ 3 £E £R2 (x1)ϕ2Mn (x1)¤+ ¡Eξ21 +Ez21¢E £ϕ2Mn (x1)¤¤
owing to independence of x1 and ξ1, z1 (Assumptions A2, A3 and A5). Further, because of boundedness

of the density function f(x) (Assumption A2), orthonormality of wavelets {ϕMn (x)} and the fact that

for x ranging over the region [a, b] the supports of all active wavelets ϕMn (x) in the model (19) are

contained in the interval [xmin(a,M), xmax(b,M)] =
£
a− s/2M , b+ s/2M¤ (see (54) in Appendix A),

we recognize that for each nmin(ϕ, x,M) ≤ n ≤ nmax(ϕ, x,M) where x ∈ [a, b] (see (19)) it holds that

E
£
ϕ2Mn (x1)

¤
=

Z xmax(b,M)

xmin(a,M)
ϕ2Mn (x) f(x)dx ≤Mf (60)

E
£
R2 (x1)ϕ

2
Mn (x1)

¤
=

Z xmax(b,M)

xmin(a,M)
ϕ2Mn (x)R

2 (x) f(x)dx ≤M2
RMf (61)

In the above expressions we have exploited that for active wavelets
R xmax(b,M)
xmin(a,M)

ϕ2Mn (x) dx = 1 and that

for x ∈ [xmin(a,M), xmax(b,M)] we have |R(x)| ≤MR, where

MR = C1Rmax {|xmin(a,M)| , |xmax(b,M)|}+ C2R

(see Assumption A1 in Section II). Using (60) and (61) we obtain eventually

A = var [y1ϕMn (x1)] ≤ 3Mf

£
M2
R + σ

2
ξ + σ

2
z

¤
<∞ (62)

where σ2ξ = Eξ
2
1 = σ

2
ζ

P∞
i=1 λ

2
i <∞ and σ2z = Ez

2
1 = σ

2
ε

P∞
i=0 ω

2
i <∞ (see Assumptions A2­A4).
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Concerning the second term in (59), denote rgMn,ϕ(k) = cov [yk+1ϕMn(xk+1), y1ϕMn(x1)] . Using

equation (1) and Assumptions A2­A5 (in particular, stationarity and independence of appropriate quantities

along with the fact that Eξ1 = Ez1 = 0), we ascertain after standard calculation that

rgMn,ϕ(k) = λkE [ζ (x1)R (x1)ϕMn (x1)]E [ϕMn (x1)]

+
¡
E
£
ξk+1ξ1

¤
+E [zk+1z1]

¢
E2 [ϕMn (x1)]

Since (see the definitions of {ξk} and {zk} in Assumptions A3 and A4 for J = L = 1) ρξ(k) =

E
£
ξk+1ξ1

¤
= σ2ζ

P∞
i=1 λiλi+k, ρz(k) = E [zk+1z1] = σ

2
ε

P∞
i=0 ωiωi+k and (by Schwarz inequality)

|E [ζ (x1)R (x1)ϕMn (x1)]| ≤ σζ
¡
E
£
R2 (x1)ϕ

2
Mn (x1)

¤¢1/2
|E [ϕMn (x1)]| ≤ ¡

E
£
ϕ2Mn (x1)

¤¢1/2
thus, owing to (60) and (61), we get therefrom that¯̄̄

rgMn,ϕ(k)
¯̄̄
≤ Mf

¡
MRσζ |λk|+

¯̄
ρξ(k)

¯̄
+ |ρz(k)|

¢
≤ Mf

Ã
MRσζ |λk|+ σ2ζ

∞X
i=1

|λiλi+k|+ σ2ε
∞X
i=0

|ωiωi+k|
!

(63)

Hence (cf. (59))

|B| ≤ 2
N−1X
k=1

(1− k/N)
¯̄̄
rgMn,ϕ(k)

¯̄̄
≤ 2

∞X
k=1

¯̄̄
rgMn,ϕ(k)

¯̄̄
≤ 2Mf

¡
c1MRσζ + c2σ

2
ζ + c3σ

2
ε

¢
<∞ (64)

as under Assumptions A3 and A4 it holds that
P∞
k=1 |λk| = c1,

P∞
k=1

P∞
i=1 |λiλi+k| = c2 andP∞

k=1

P∞
i=0 |ωiωi+k| = c3 some 0 < c1, c2, c3 <∞. Putting together (59), (62) and (64) yields

var
¡
α̂gMn

¢ ≤ CgαN−1 (65)

where Cgα = Mf

³
c̄1MRmax {MR,σζ}+ c̄2σ2ζ + c̄3σ2ε

´
and c̄1 = 2c1 + 3, c̄2 = 2c2 + 3

P∞
i=1 λ

2
i ,

c̄3 = 2c3 + 3
P∞
i=0 ω

2
i . After similar steps, we get (cf. (17))

var
³
β̂
g
mn

´
≤ Cgβ N−1 (66)

where Cgβ = C
g
α. As regards the coefficients α̂fMn and β̂

f
mn (cf. (18)), from Assumption A2 we obtain

immediately

var
³
α̂fMn

´
= var

"
N−1

NX
k=1

ϕMn (xk)

#
= N−1var [ϕMn (x1)]

and then using var [ϕMn (x1)] ≤ E
£
ϕ2Mn (x1)

¤
and the bound in (60), we conclude that var

³
α̂fMn

´
≤

Mf N
−1. Analogously, var

³
β̂
f
mn

´
≤Mf N

−1.
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APPENDIX C

Consider the variance of ĝ(x;K) for x ∈ [a, b]. By virtue of (26), we have

var {ĝ(x;K)} = E [ĝ(x;K)− g(x;K)]2 (67)

where (cf. (8) and (19))

ĝ(x;K)− g(x;K) =

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

¡
α̂gMn − αgMn

¢
ϕMn (x)

+
K−1X
m=M

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

³
β̂
g
mn − βgmn

´
ψmn (x)

Owing to (49) in Appendix A, we obtain immediately

|ĝ(x;K)− g(x;K)| ≤ Mϕ2
M/2

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

¯̄
α̂gMn − αgMn

¯̄

+Mψ

K−1X
m=M

2m/2
nmax(ψ,x,m)X
n=nmin(ψ,x,m)

¯̄̄
β̂
g
mn − βgmn

¯̄̄

and then (by Cauchy inequality)

[ĝ(x;K)− g(x;K)]2 ≤ 2M2
ϕ2
M

 nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

¯̄
α̂gMn − αgMn

¯̄2

+2M2
ψ

 K−1X
m=M

2m/2
nmax(ψ,x,m)X
n=nmin(ψ,x,m)

¯̄̄
β̂
g
mn − βgmn

¯̄̄2

= 2
¡
e21 + e

2
2

¢
, say (68)

For the first component, using again Cauchy inequality and including (53) in Appendix A, we get

e21 ≤M2
ϕ S 2

M

nmax(ϕ,x,M)X
n=nmin(ϕ,x,M)

¡
α̂gMn − αgMn

¢2 (69)

For the second component, after appropriate rearrangements, we have

e22 =M
2
ψ

K−1X
m=M

2m/2
K−1X
m0=M

2m
0/2

nmax(ψ,x,m)X
n=nmin(ψ,x,m)

nmax(ψ,x,m0)X
n0=nmin(ψ,x,m0)

¯̄̄
β̂
g
mn − βgmn

¯̄̄ ¯̄̄
β̂
g
m0n0 − βgm0n0

¯̄̄
(70)

Now, taking into account (67)­(70), the fact that (see (25) in Section V)

E
¡
α̂gMn − αgMn

¢2
= var

¡
α̂gMn

¢
E
¯̄̄
β̂
g
mn − βgmn

¯̄̄ ¯̄̄
β̂
g
m0n0 − βgm0n0

¯̄̄
≤ max

n
var

³
β̂
g
mn

´
, var

³
β̂
g
m0n0

´o
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and (53) in Appendix A along with the bounds (65) and (66) in Appendix B, we see that for x ∈ [a, b]
it holds that

var {ĝ(x;K)} ≤ 2S2max©M2
ϕ,M

2
ψ

ª
Cgα

2M +

Ã
K−1X
m=M

2m/2

!2 N−1

Since

2M +

Ã
K−1X
m=M

2m/2

!2
= 2K

·
2−(K−M) +

³
1/
³√
2− 1

´´2 ³
1− 2−(K−M)/2

´2¸
and in the wavelet models K > M , we get eventually

var {ĝ(x;K)} ≤ ¡Cg 2K¢N−1 (71)

where Cg = 2
³
1 + 1/

¡√
2− 1¢2´S2maxnM2

ϕ,M
2
ψ

o
Cgα, for each point x ∈ [a, b] and each scale

factor K. Because of similarity of the models (9), (20) to those in (8), (19), and similarity of the variance

bounds of α̂fMn and β̂
f
mn to those in (65), (66), we obtain after analogous steps that

var
n
f̂(x;K)

o
≤ ¡Cf 2K¢N−1 (72)

where Cf = 2
³
1 + 1/

¡√
2− 1¢2´S2maxnM2

ϕ,M
2
ψ

o
Mf , for any x ∈ [a, b] and any K.

APPENDIX D

Let {ϑN} and {ηN} be sequences of random variables and {aN}, {bN} be sequences of positive

numbers such that aN , bN → 0 as N →∞.
Lemma 3: If Eϑ2N ≤ CaN some C > 0 independent of N then ϑN = O(a

1/2
N ) in probability.

Proof: From E ϑ2N ≤ CaN , by Chebychev’s inequality, P {|rN | (|ϑN | /bN ) > ε} ≤
¡
C/ε2

¢
r2N

¡
aN/b

2
N

¢
for each ε > 0, i.e. (30) holds for bN = a

1/2
N .

Lemma 4: If ϑN = a+O(aN) in probability and ηN = b+O(bN) in probability where b 6= 0, then

ϑN/ηN = a/b+O (max {aN , bN}) in probability.

Proof: It holds that (see proof of Lemma 2 in [15])¯̄̄̄
ϑN
ηN

− a
b

¯̄̄̄
≤
¯̄̄̄
ϑN
ηN

¯̄̄̄ |ηN − b|
|b| +

|ϑN − a|
|b|

Assume |ϑN − a| ≤ |a| (ε/ (2 + ε)) (aN/ |rN |) and |ηN − b| ≤ |b| (ε/ (2 + ε)) (bN/ |rN |). Making use

of the above inequality, we get that¯̄̄̄
ϑN
ηN

− a
b

¯̄̄̄ µ
1−

µ
ε

2 + ε

¶
bN
|rN |

¶
≤ 2

¯̄̄a
b

¯̄̄ µ ε

2 + ε

¶
max {aN , bN}

|rN |
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and for rN arbitrarily slowly tending to zero this yields for large N that¯̄̄̄
ϑN
ηN

− a
b

¯̄̄̄
≤
¯̄̄a
b

¯̄̄
ε
max {aN , bN}

|rN |
Therefore

P

½
|rN |

¯̄̄̄
ϑN
ηN

− a
b

¯̄̄̄
/max {aN , bN} >

¯̄̄a
b

¯̄̄
ε

¾
≤ P

½
|rN | |ϑN − a|

aN
> |a|

µ
ε

2 + ε

¶¾
+P

½
|rN | |ηN − b|

bN
> |b|

µ
ε

2 + ε

¶¾
each ε > 0, which ­ including (30) in Section V ­ ends the proof.
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